
Università degli Studi di Trento

Facoltà di Scienze Matematiche Fisiche e Naturali

Dipartimento di Scienze Informatiche

Question Authority

An Inquiry into The Secure Layer

Michele Orrù

Relatore: Prof. Massimiliano Sala

Correlatore: Dott. Emanuele Bellini

Controrelatore: Prof. Giulia Boato

Anno accademico 2012/2013

Università degli Studi di Trento

Facoltà di Scienze Matematiche Fisiche e Naturali

Dipartimento di Scienze Informatiche

Question Authority

An Inquiry into The Secure Layer

Tesi di:
Michele Orrù

Relatori:
Prof. Massimiliano Sala

Dott. Emanuele Bellini

Controrelatore:
Prof. Giulia Boato

Anno accademico 2012/2013

Contents

1 Preface 3

I Prolegomena 5

2 The Secure Layer 7

2.1 The handshake protocol . 8

2.2 The record protocol . 9

2.3 What is inside a certi�cate . 10

2.4 Remarks among SSL/TLS versions 10

3 Mathematical Principles 13

3.1 Algorithmic Complexity Notation . 14

3.2 Euclid's Greatest Common Divisor 14

3.3 Square Root . 15

3.4 The RSA Cipher . 18

II Questions 19

4 Fermat's factorization method 21

4.1 An Implementation Perspective . 22

4.2 Thoughts about a parallel solution 23

5 Wiener's cryptanalysis method 25

5.1 Background on Continued Fractions 25

5.2 Continued Fraction Algorithm applied to RSA 26

5.3 An Implementation Perspective . 27

6 Pollard's p− 1 factorization method 29

6.1 An Implementation Perspective . 30

i

7 Williams' p+ 1 factorization method 33

7.1 Background on Lucas Sequences . 33

7.2 Dressing up . 34

8 Pollard's ρ factorization method 37

8.1 Complexity . 39

8.2 An Implementation Perspective . 39

9 Dixon's factorization method 43

9.1 Interlude . 43

9.2 Breaching the kernel . 44

9.3 An Implementation Perspective . 45

10 An Empirical Study 49

10.1 To skim o� the dataset . 50

10.2 To count . 50

10.3 The proof and the concept . 52

11 Conclusions 53

ii

Many persons who are not conversant with mathematical studies

imagine that because the business of [Babbage's Analytical Engine] is to

give results in numerical notation, the nature of the processes must

consequently be arithmetical and numerical, rather than algebraical and

analytical. This is an error. The engine can arrange and combine its

numerical quantities exactly as if they were letters or any other general

symbols; and in fact it might bring out its results in algebraical notation,

were provisions made accordingly.

Augusta Ada, Countess of Lovelace

1

Preface

Even if the basic RSA key generation algorithm is fairly straightforward, it turns

out that any software willing to provide such a feature does have to test the candidate

key against a substantious number of threats before claiming its security.

The purpose of this project is to examine the TLS protocol, to study in depth the

OpenSSL library, and to survey some of the attacks to which a bad key generation

is exposed. On the footprint of [1], where most of these attacks have already been

analyzed, we are going to describe the mathematical basis of each attack, reason

about a possible solution in procedural programming, and �nally, give some hints

about a distributed version of it.

Besides the pseudocode already available in this document, the project led to the

development of a real, open, C implementation consultable at https://github.com/

mmaker/bachelor.

In addition, the application has then been deployed on the university cluster and

pointed against a huge number of websites - Alexa's top 1 million global websites.

Some of the statistical result extracted from this investigation are later examined in

chapter 10.

3

https://github.com/mmaker/bachelor
https://github.com/mmaker/bachelor
http://www.alexa.com/

Part I

Prolegomena

5

The Secure Layer

Transport Layer Security, formerly known as SSL (Secure Socket Layer), aims

to bring some security features over a communication channel, speci�cally providing

integrity and con�dentiality of the message, authenticity of the server and op-

tionally the client. Many ancient application protocols wrapped themselves to be over

TLS/SSL, with the only di�erence of the �s� appended to the protocol name (such

as HTTPs, IMAPs). It is nowadays widely adopted all over the world, becoming the

de-facto standard for end-to-end encryption.

Certi�cation Authorities are authorities to whom it is granted the power to

authenticate the peer. Pragmatically, they are public keys pre-installed on your com-

puter that decide who and who not to trust by employing a digital signature. In order

to overcome the proliferation of keys to be distributed, and satisfy the use-case of a

mindless user willing to accomplish a secure transaction on the internet, the following,

hierarchical trust model proliferated ([2], Fig.2)1:

Root CA

CA

CA

...

EE EE

...

CA

...
...

CA

CA

...
...

CA

...
...

EE EE ⇒ End Entities

...

Certi�cation

Authorities

Certi�cation

Authorities

Root Authorities

· · ·

⇒

⇒

⇒

· · · · · ·

· · ·

There are two types of authorities: root CAs and intermediate CAs. Root Author-

ities are the only nodes ultimately considered trustoworthy by the end user. Their

1 The image is merely esempli�cative, there is no boundary to the structure of the tree.

7

Chapter 2. The Secure Layer

private key is used to sign digital certi�cates, either to Certi�cate Authorities, to

which is delegated the power of authenticating others, or End Entities, holders of a

private key and their corresponding certi�cate whose identity has been veri�ed.

Upon connecting, the client will check to see if the certi�cate presented was issued

by a CA present in the trust store (root CA); otherwise it will check to see if it has

been issued by a trusted CA, and so on until either a trusted CA is found or no

trusted authority is found. In the latter case, the connection is aborted.

The protocol is actually a collection of many sub-protocols:

• handshake protocol, a messaging protocol that allows to authenticate the

peers, and eventually restore a past encrypted session.

• record protocol, permitting the encapsulation of higher level protocols, like

HTTP and even the next two sub-protocols. It is the fulcrum for all data

transfer.

• alert protocol, which steps-in at any time from handshake to closure of the

session in order to signal a fatal error. The connection will be closed immediately

after sending an alert record.

• changespec protocol, to notify and negotiate with the receiver that subsequent

records will be protected under the just negotiated keys and Cipher Spec.

We will now proceed with a brief synopsis of the �rst two of these protocols, due to

their relevant role inside the connection, but will not proceed further, as they were

the only two we actually used in our research.

2.1 The handshake protocol

As mentioned above, the handshake occurs whenever a machine attempts to start

a TLS connection. If there is no session identi�er, a new one is being built up;

otherwise the client will include the session-id in the initial communication and the

server will eventually skip the key agreement phase since it has happened recently2.

A new session identi�er gets built as follows. Once a communication channel over the

transport layer has been established, the client sends a hello message, to which the

server must respond with a server hello, or else a fatal error will occurr. The above

hello messages agree the two parties on the TLS protocol version, compression and

encryption methods, and establish a session identi�er ([3] �7.3).

2�recently� is not well-de�ned in the standard - it is suggested an upper limit of 24-hours lifetime,
but the only actual constraint is that both client and server agree on it.

8

2.2. The record protocol

Following the hello messages, the server will send its certi�cate, if it is to be

authenticated. If the client is happy with it, a RSA or Di�e-Hellmann key exchange

is initiated by the client to establish the symmetric key to be used for the ensuing

session.

2.2 The record protocol

Once the two parties share a common secret, called premaster secret, they can

generate a new key to be used for symmetric encryption of message, and another for

message authentication.

All TLS protocol messages move in records of up to 16K, containing 3 main

components: MAC-data, data, and padding.

• MAC-data is no other than the Message Authentication Code over the encrypted

data sent (SSL performs the encrypt-then-mac mode of operation). It provides

authenticity and integrity of the message.

• Data is the actual message, encrypted after a possible compression.

• The Padding section contains informations about the padding algorithm adopted,

and the padding size.

Failure to authentication, or decryption will result in I/O error and a close of the

connection.

9

Chapter 2. The Secure Layer

2.3 What is inside a certi�cate

SSL certi�cates employed the X.509 PKI standard, which speci�es, among other

things, the format for revocation lists, and certi�cate path validation algorithms.

Version

Serial Number

Algorithm ID

Validity
〈NotBefore, NotAfter〉

Issuer
eventually plus Issuer Unique Identi�er

Subject
eventually plus Subject Unique Identi�er

Subject Public Key Information
〈PubKey algorithm, PubKey〉

Extensions
hhhhhhhhhhhhhhhhhh

hhhh
hhh

hhhh
hhh

hhhh



Certi�cate

Certi�cate Signature Algorithm

Certi�cate Signature

It is a pretty old standard, de�ned in the eighties by the International Telecom-

munication Union. Born before HTTP, it was initially thought in abstracto to be

extremely �exible and general3. And precisely for this �exibility and its adaptation

to the SSL/TLS protocol without a very-well de�ned structure have been its major

�aws: it is still di�cult to write good, reliable software parsing a X.509 certi�cate.

2.4 Remarks among SSL/TLS versions

The �rst, important di�erence to point out here is that SSLv2 is no more consid-

ered secure. There are known attacks on the primitives adopted (MD5, for example

[5]) as well as protocol �aws. SSLv2 would allow a connection to be closed via a

not-authenticated TCP segment with the FIN �ag set ([5] �2). Padding informations

are sent in clear, and the payload is not compressed before encrypting, allowing a

malicious attacker tra�c analysis capabilities [6]. The ciphersuite is negotiated using

non-authenticated informations, allowing an attacker to in�uence the choice of the

Cipher Spec and weaken the security of the communication [5] �2. Most of these

3 �X.509 certi�cates can contain just anything� [4]

10

2.4. Remarks among SSL/TLS versions

vulnerabilities have been addressed by the later SSLv3, which introduced compression

and protection against truncation attacks. Its standardized twin, TLS 1.0, only di�ers

on the cipher suite and key calculation requirements, strengthen in order to increase

the security of the channel [3]. Both SSLv3 and TLS 1.0 have been threatened in

2011 by an attack that could break the same origin policy, known as BEAST. It is

not dramatic, and almost any browser now mitigates its spectrum of action.

Even if TLS 1.1, and TLS 1.2 are considered safe as of today, attacks such as

CRIME, and lately BREACH constitute a new and valid instance of threat for HTTP

compressions mechanisms. However, as their premises go beyond the scope of this

document, all these attacks have not been analyzed. For further informations, see

http://breachattack.com/.

11

http://breachattack.com/

Mathematical Principles

In this chapter we formalize the notation used in the rest of the thesis, and fur-

thermore attempt to discuss and study the elementary functions on which the whole

project has been grounded.

The � and � are respectively used with the meaning of left and right bitwise shift,

as usual in computer science.

The isqrt() function will be de�ned in section 3.3, with the acceptation of discrete

square root.

The logarithmic log function is assumed to be in base two, i.e. log2.

The // symbol is the integer division over N, i.e. a//b = ba
b
c, as usual in the python

language.

P ⊂ N is the set containing all prime intgers.

The binary operator
r←−, always written as x

r←− S, has the meaning of �pick a uni-

formly distributed random element x from the set S�.

The summation in F2 is always expressed with the circled plus, i.e. a⊕ b.

De�nition (Smoothness). A number n is said to be B-smooth if and only if all its

prime factors are contained in B.

De�nition (Quadratic Residue). An integer a is said to be a quadratic residue

mod n if it is congruent to a perfect square mod n:

x2 ≡ a (mod n)

De�nition (Legendre Symbol). The Legendre Symbol, often contracted as (a/p) is

a function of two integers a and p de�ned as follows:

(a/p) =


0 if a ≡ 0 (mod p)

1 if a is a quadratic residue modulo p

−1 if a is a non-residue modulo p

13

Chapter 3. Mathematical Principles

3.1 Algorithmic Complexity Notation

The notation used to describe asymptotic complexity follows the O-notation,
abused under the conventions and limits of MIT's Introduction to Algorithms [7].

Let O (g) be the asymptotic upper bound of g:

O (g(n)) = {f(n) : ∃n0, c ∈ N | 0 ≤ f(n) ≤ cg(n) ∀n > n0}

With f(n) = O (g(n)) we actually mean f(n) ∈ O (g(n)). Moreover, since the the

expression �running time� has achieved a certain vogue, we shall sometimes use this

term as interchangeable with �complexity�, even though imprecise ([8] �1.1.4).

3.2 Euclid's Greatest Common Divisor

Being the greatest common divisor a foundamental algebraic operation in the TLS

protocol, OpenSSL implemented it with the following signature:

int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);

The computation proceeds under the well-known Euclidean algorithm, speci�cally

the binary variant developed by Josef Stein in 1961 [9]. This variant exploits some

interesting properties of gcd(a, b):

(a) if a, b are even, then gcd(a, b) = 2gcd(a/2, b/2);

(b) if a is even and b is odd, then gcd(a, b) = gcd(a/2, b);

(c) gcd(a, b) = gcd(a− b, b), as in the standard Euclid algorithm;

(d) the sum of two odd numbers is always even.

Both [9] and [7] analyze the running time of the algorithm; [7]'s proof is fairly

simpler and proceeds by induction. Anyway, both show that algorithm 1 belongs to

the class O (log b).

14

3.3. Square Root

Algorithm 1 OpenSSL 's GCD

1: function gcd(a, b)

2: k ← 0

3: while b 6= 0 do

4: if a is odd then

5: if b is odd then . by property (c) and (d)

6: a← (a− b)� 1

7: else . by property (b)

8: b← b� 1

9: if a < b then a, b← b, a

10: else

11: if b is odd then . by property (b)

12: a← a� 1

13: if a < b then a, b← b, a

14: else . by property (a)

15: k ← k + 1

16: a, b← a� 1, b� 1

17: return a� k

Unfortunately, there is yet no known parallel solution that signi�cantly improves

Euclid's gcd.

3.3 Square Root

Computing the square root is another important building block of the project,

though not available in OpenSSL . Apparently, OpenSSL does only provide the dis-

crete square root implementation using the Tonelli/Shanks algorithm, which speci�-

cally solves in x the equation x2 = a (mod p), with p ∈ P:

BIGNUM* BN_mod_sqrt(BIGNUM* x, const BIGNUM* a, const BIGNUM* p,

const BN_CTX* ctx);

Instead, we are interested in �nding the the pair 〈x, r〉 ∈ N2 such that x2 + r = n,

that is, the integer part of the square root of a natural number and its rest. Hence,

we did come out with our speci�c implementation, �rst using Bombelli's algorithm,

and later with the one of Dijkstra. Both are going to be discussed below.

Unless otherwise speci�ed, in the later pages we use
√
n with the usual meaning

�the half power of n�, while with x, r = isqrt(n) we mean the pair just de�ned.

15

Chapter 3. Mathematical Principles

Bombelli's Algorithm dates back to the XVI century, and approaches the prob-

lem of �nding the square root by using continued fractions. Unfortunately, we weren't

able to fully assert the correctness of the algorithm, since the original document [10]

presents a di�cult, inconvenient notation. Though, for completeness' sake, we report

in table 2 the pseudocode adopted and tested for its correctness.

Algorithm 2 Square Root: Bombelli's algorithm

1: function sqrt(n)

2: i← 0; g ← {}
3: while n > 0 do . take pairs of digits and store them in g

4: gi ← n (mod 100)

5: n← n//100

6: i← i+ 1

7: x← 0; r ← 0

8: for j = i− 1 downto 0 do

9: r = 100r + gi . take next pair

10: for d = 0 to 9 do . �nd gratest multiplier d

11: y′ ← d(20x+ d)

12: if y′ > r then break

13: else y ← y′

14: r ← r − y
15: x← 10x+ d− 1 . d is the next digit

16: return x, r

For each digit of the result, we perform a subtraction, and a limited number of mul-

tiplications. This means that the complexity of this solutions belongs toO (log n log n)

= O
(
log2 n

)
.

Remark 3.3.1. Note that Bombelli actually has found a solution in x for a slightly

di�erent equation than the one we initially formulated. Speci�cally, he found the pair

〈x, r〉 such that (x+r)2 = a, where x is the mantissa, while r is the decimal part. For

our purpose this change is irrelevant: we just need to be able to distinguish perfect

squares, and thus assert that r is zero.

Dijkstra's Algorithm can be found in [11], �8, p.61. There, Dijkstra presents

an elightning process for the computation of the square root, making only use of

binary shift and algebraic additions. Speci�cally, the problem attempts to �nd, given

a natual n, the integer a that establishes:

a2 ≤ n ∧ (a+ 1)2 > n (3.1)

16

3.3. Square Root

Take now the pair 〈a = 0, b = n + 1〉, and consider the inverval [a, b[. We would

like to reduce the distance between the upper bound b and the lower bound a, while

holding the guard 3.1:

a2 ≤ n ∧ b > n

The speed of convergence is determined by the choice of the distance d, which

analougously to the dicotomic search problem, is optimal when d = (b− a)//2.

Algorithm 3 Square Root: an intuitive, naïve implementation

1: function sqrt(n)

2: a← 0; b← n+ 1

3: while a+ 1 6= b do

4: d← (b− a)//2

5: if (a+ d)2 ≤ n then a← a+ d . increment left bound

6: else if (b− d)2 > n then b← b− d . decrement right bound

7: return a, a2 − n

Now optimization proceeds with the following change of variables:

a) c = b− a,
b) p = ac,

c) q = c2,

d) r = n− a2;

resulting into algorithm 4. For any further details, the reference is still [11].

Algorithm 4 Square Root: �nal version

1: function sqrt(n)

2: p← 0; q ← 1; r ← n

3: while q ≤ n do q ← q � 2

4: while q 6= 1 do

5: q ← q � 2

6: h← p+ q

7: p← q � 1

8: h← 2p+ q

9: if r ≥ h then

10: p← p+ q

11: r ← r − h
12: return p, r

17

Chapter 3. Mathematical Principles

A fair approximation of the magnitude of the Dijkstra algorithm can be studied

by looking at the pseudocode in 3. Exactly as in the dicotomic search case, we split

the interval [a, b] in half on each step, and choose whether to take the leftmost or

the rightmost part. This results in log(n + 1) steps. During each iteration, instead,

as we have seen in 4 we just apply summations and binary shifts, which are upper

bounded by O (log n/2). Thus, the order of magnitude belongs to O
(
log2 n

)
.

Even if both algorithms presented have asymptotically the same complexity, we

believe that adopting the one of Dijkstra has lead to a pragmatic, substantial perfor-

mance improvement.

3.4 The RSA Cipher

The RSA cryptosystem, invented by Ron Rivest, Adi Shamir, and Len Adleman

[12], was �rst published in August 1977's issue of Scienti�c American. In its basic

version, this asymmetric cipher works as follows:

• choose a pair 〈p, q〉 of random prime numbers; let N be the product of the two,

N = pq, and call it public modulus ;

• choose a pair 〈e, d〉 of random numbers, both in Z∗ϕ(N), such that one is the

multiplicative inverse of the other, ed ≡ 1 (mod ϕ(N)) and ϕ(N) is Euler's

totient function;

Now, call 〈N, e〉 public key, and 〈N, d〉 private key, and let the encryption function

E(m) be the e-th power of the message m:

E(m) = me (mod N) (3.2)

while the decryption function D(c) is the d-th power of the ciphertext c:

D(c) = cd ≡ E(m)d ≡ med ≡ m (mod N) (3.3)

that, due to Fermat's little theorem, is the inverse of E.

From now on, unless otherwise speci�ed, the variableN = pq will always refer to the

public modulus of a generic RSA keypair, with p, q being the two primes factorizing

it, such that p > q. Again, e, d will respectively refer to the public exponent and the

private exponent.

18

Part II

Questions

19

Fermat's factorization method

Excluding the trial division, Fermat's method is the oldest known systematic

method for factorizing integers. Even if its algorithmic complexity is not among the

most e�cient, it holds still a practical interest whenever the two primes are su�ciently

close. Indeed, [13] �B.3.6 explicitly recommends that |p− q| ≥
√
N2−100 for any key

of bitlength 1024, 2048, 3072 in order to address this kind of threat.

The basic idea is to attempt to write N as a di�erence of squares,

x2 −N = y2 (4.1)

So, we start by x = d
√
Ne and check that x2−N is a perfect square. If it isn't, we

iteratively increment x and check again, until we �nd a pair 〈x, y〉 satisfying equation
4.1. Once found, we claim that N = pq = (x + y)(x − y); it is indeed true that,

if we decompose x2 − y2 as di�erence of squares, then it is immediately clear that

x+ y | N ∧ x− y | N , and that both are non-trivial divisors.

Complexity [14] contains a detailed proof for the complexity of this algorithm,

which is O
(

(1−k)2
2k

√
N
)

, 0 < k < 1. We summarize it down below here to better

clarify the limits of this algorithm.

Proof. Since, once we reach the �nal step xf it holds N = pq = x2f − y2f , the number
of steps required to reach the result is:

xf −
√
N =

p+ q

2
−
√
N

=
p+ N

p

2
−
√
N

=
(
√
N − p)2

2p

If we �nally suppose that p = k
√
N, 0 < k < 1, then the number of cycles becomes

(1−k)2
2k

√
N .

Remark 4.0.1. Note that, for the algorithm to be e�ective, the two primes must be

�really close� to
√
N . As much as the lowest prime gets near to 1, the ratio (1−k)2

2k

becomes larger, until the actual magnitude of this factorization method approaches

O (N).

21

Chapter 4. Fermat's factorization method

4.1 An Implementation Perspective

At each iteration, the i−th state is hold by the pair 〈x, x2〉.
The later step, described by 〈x+ 1, (x+ 1)2〉 can be computed e�ciently considering

the square of a binomial: 〈x+ 1, x2 + 2x+ 1〉. The upper-bound, instead, is reached
when ∆ = p− q = x+ y − x+ y = 2y > 2−100

√
N .

Algorithm 5 presents a simple implementation of this factorization method, taking

into account the small optimizations aforementioned.

Algorithm 5 Fermat Factorization

1: function fermat(N, e)

2: x← b
√
Nc

3: x′ ← x · x
4: repeat

5: x′ ← x′ + 2x+ 1

6: x← x+ 1

7: y, rest← isqrt(x′ −N)

8: until rest 6= 0 and y <
√
N

2101
. i.e., 4.1 holds?

9: if rest = 0 then

10: p← x+ y

11: q ← x− y
12: return p, q

13: else

14: return nil

How to chose the upper limit? Our choice of keeping straight with the limits of

the standard is a mere choice of commodity: we are interested in �nding public keys

not respecting the standard. Though, it is worth noting that what this limit states is

that at least one of the most signi�cant 100 bits should be di�erent between the two

primes:

0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 1 0 0 · · · 0 0
}
2

logN
2
−100

0 1 0 0 0 0 1 1 · · · 0 1 0 0 0 1 0 0 · · · LSB · · · 0
}
p

0 1 0 0 0 0 0 1 · · · 0 1 0 0 0 0 0 0 · · · LSB · · · 0
}
q

For example, in the case of a RSA key 1024, the binary di�erence between p

and q has to be greater than 2412, which means that, excluding corner-cases where

22

4.2. Thoughts about a parallel solution

the remainder is involved, there must be at least one di�erence in the top 100 most

signi�cant bits for the key to be considered safe.

4.2 Thoughts about a parallel solution

At �rst glance we might be willing to split the entire interval {d
√
Ne, . . . , N − 1}

in equal parts, one per each node. However, this would not be any more e�cient

than the trial division algorithm, and nevertheless during each single iteration, the

computational complexity is dominated by the square root isqrt() function, which

belongs to the class O
(
log2N

)
, as we saw in section 3.3. Computing separatedly x2

would add an overhead of the same order of magnitude O
(
log2N

)
, and thus result

in a complete waste of resources.

23

Wiener's cryptanalysis method

Wiener's attack was �rst published in 1989 as a result of cryptanalysis on the

use of short RSA secret keys [15]. It exploited the fact that it is possible to �nd

the private key in polynomial time using continued fractions expansions whenever a

good estimate of the fraction e
N
is known. More speci�cally, given d < 1

3
4
√
N one can

e�ciently recover d only knowing 〈N, e〉.
The scandalous implication behind Wiener's attack is that, even if there are sit-

uations where having a small private exponent may be particularly tempting with

respect to performance (for example, a smart card communication with a computer),

they represent a threat to the security of the cipher. Fortunately, [15] �9 presents a

couple of precautions that make a RSA key-pair immune to this attack, namely (i)

making e >
√
N and (ii) gcd(p− 1, q − 1) large.

5.1 Background on Continued Fractions

Let us call continued fraction any expression of the form:

a0 +
1

a1 + 1
a2+

1

a3+
1

a4+...

Consider now any �nite continued fraction, conveniently represented with the se-

quence 〈a0, a1, a2, a3, . . . , an〉. Any number x ∈ Q can be represented as a �nite

continued fraction, and for each i < n there exists a fraction h/k approximating x. By

de�nition, each new approximation[
hi

ki

]
= 〈a0, a1, . . . , ai〉

is recursively de�ned as:

a−1 = 0

ai = hi//ki


h−2 = 0

h−1 = 1

hi = aihi−1 + hi−2


k−2 = 1

k−1 = 0

ki = aiki−1 + ki−2

(5.1)

25

Chapter 5. Wiener's cryptanalysis method

Among the proli�c properties of such objects, Legendre in 1768 discovered that,

if a continued fraction f ′ = θ′

κ′
is an underestimate of another one f = θ

κ
, i.e.

|f − f ′| = δ (5.2)

then for a δ su�ciently small, f ′ is equal to the n-th continued fraction expansion of

f , for some n ≥ 0 ([16] �2). Formally,

Theorem (Legendre). If f = θ
κ
, f ′ = θ′

κ′
and gcd(θ, κ) = 1, then

∣∣∣∣f ′ − θ

κ

∣∣∣∣ < δ =
1

2κ2
implies that

[
θ′

κ′

]
=

[
θn

κn

]
, for some n ≥ 0 (5.3)

Two centuries later, �rst Wiener [15] and later Dan Boneh [1] leveraged this the-

orem in order to produce an algorithm able to recover f , having f ′. The continued

fraction algorithm is the following:

(i) generate the next ai of the continued fraction expansion of f ′;

(ii) use 5.1 to generate the next fraction hi/ki equal to 〈a0, a1, . . . , ai−1, ai〉
(iii) check whether hi/ki is equal to f

5.2 Continued Fraction Algorithm applied to RSA

As we saw in 3.4, by construction the two exponents are such that ed ≡ 1

(mod ϕ(N)). This implies that there exists a k ∈ N | ed = kϕ(N) + 1. This can be

formalized to be the same problem we formalized in 5.3:

ed = kϕ(N) + 1∣∣∣∣ed− kϕ(N)

dϕ(N)

∣∣∣∣ =
1

dϕ(N)∣∣∣∣ e

ϕ(N)
− k

d

∣∣∣∣ =
1

dϕ(N)

Now we proceed by substituting ϕ(N) with N , since for large N , one approximates

the other. We consider also the di�erence of the two, limited by |��N + p+ q − 1−��N | <
3
√
N . For the last step, remember that k < d < 1/3

4
√
N :

26

5.3. An Implementation Perspective

∣∣∣∣ eN − k

d

∣∣∣∣ =

∣∣∣∣ed− kNNd

∣∣∣∣
=

∣∣∣∣��ed− kN −����kϕ(N) + kϕ(N)

Nd

∣∣∣∣
=

∣∣∣∣1− k(N − ϕ(N))

Nd

∣∣∣∣
≤

∣∣∣∣∣3k
√
N

Nd

∣∣∣∣∣ =
3k

d
√
N
<

3(1/3
4
√
N)

d
√
N

=
1

d 4
√
N
<

1

2d2

This demonstrates that the hypotesis of 5.3 is satis�ed, and allows us to proceed

with the continued fraction algorithm to converge to a solution [1].

We start by generating the logN continued fraction expansions of e
N
, and for each

convergent k
d
, which by contruction is already at the lowest terms, we verify if it

produces a factorization of N . First we check that ϕ(N) = ed−1
k

is an integer. Then

we solve 5.4 in x in order to �nd p, q:

x2 − (N − ϕ(N) + 1)x+N = 0 (5.4)

The above equation is constructed so that the x coe�cient is the sum of the two

primes, while the constant term N is the product of the two. Therefore, if ϕ(N) has

been correctly guessed, the two roots will be p and q.

5.3 An Implementation Perspective

The algorithm is pretty straightforward by itself: we just need to apply the def-

initions provided in 5.1 and test each convergent until logN iterations have been

reached. A Continued fraction structure may look like this:

typedef struct cf {

bigfraction_t fs[3]; /* holding h_i/k_i, h_i-1/k_i-1, h_i-2/k_i-2 */

short i; /* cycling in range(0, 3) */

bigfraction_t x; /* pointer to the i-th fraction in fs */

BIGNUM* a; /* current a_i */

BN_CTX* ctx;

} cf_t;

where bigfraction_t is just a pair of BIGNUMs 〈hi, ki〉. Whenever we need to produce

a new convergent, we increment i (mod 3) and apply the given de�nitions. The fresh

27

Chapter 5. Wiener's cryptanalysis method

convergent must be tested with very simple algebraic operations. It is worth noting

here that 5.4 can be solved using the reduced discriminant formula, as p, q are odd

primes:

∆ =

(
N − ϕ(N) + 1

2

)2

−N

x〈p,q〉 = −N − ϕ(N) + 1

2
±
√

∆

Assuming the existence of the procedures cf_init, initializing a continued fraction

structure, and cf_next producing the next convergent, we provide an algorithm for

attacking the RSA cipher via Wiener:

Algorithm 6 Wiener's Attack

1: function wiener(N, e)

2: f ← cf_init(e,N)

3: for dlogNe times do

4: k, d← cf_next(f)

5: if k - ed− 1 then continue

6: ϕ(N)← (ed− 1) // k

7: if ϕ(N) is odd then continue

8: b← (N − ϕ(N) + 1)� 1

9: ∆, r ← isqrt(b2 −N)

10: if r 6= 0 then continue

11: p← b+ ∆

12: q ← b−∆

13: break

14: return p, q

Parallelism Parallel implementation of this speci�c version of Wiener's Attack is

di�cult, because the inner loop is inherently serial. At best, parallelism could be

employed to split the task into a constructor process, building the fn convergents,

and many consumers receiving each convergent to be processed seperatedly. The �rst

one arriving to a solution, broadcasts a stop message to the others.

28

Pollard's p− 1 factorization method

Pollard's p − 1 method, �rst published in [17] �4, takes relevance whenever the

predecessor of any of the two primes can be seen as the product of many, relatively

small, prime powers. The idea employed here is that if we �nd a Q satisfying p−1 | Q
then, due to Fermat's little theorem, p | aQ − 1 and thus p can be found by applying

gcd(N, aQ − 1) = p. The same applies to the other prime q.

Now, the original problem has been replaced by the problem of generating a

number Q su�ciently large to be a multiple of p− 1. It would be fairly easy to set Q

to be the factorial of a number K greater than the highest prime power factorizing

p− 1. That is to say, having p− 1 = πe00 · · · π
ek
k where k ≥ 1 and each πi ∈ P so that

πe00 < · · · < πekk ≤ K implies that Q = K! is divided by all factors of p − 1 and so

p− 1 itself divides Q.

Though, at this point all primes would be over-represented. What we actually need

is the least common multiple of all numbers ≤ K. We could easily obtain it via the

popular formula lcm(a, b) = ab
gcd(a,b)

and pay O (3 logN) on each step, but there is

something even better.

If we are provided with a pool of primes P , we can guess a valuable Q manually

tuning the powers of each prime, to the bounds strictly needed. We proceed as follows:

(i) take a random, initial b, and call it base;

(ii) take the i-th prime in P , and call it π;

(iii) iteratively update the value of b via

b← bπ (mod N) (6.1)

for e = d logN
log π
e times. In this way we are sure to have taken the greatest prime

power not exceeding N 's bits.

(iv) select Q = b − 1 (mod N) and check the gcd with N , hoping this leads to one

of the two prime factors:

g = gcd(Q,N), 1 < g < N . (6.2)

If so, than we have �nished, since g itself and N
g
are the two primes factorizing

the public modulus. Otherwise, if g = 1 we go back to to (ii), since p − 1 - Q
yet; if g = N start back from scratch, as pq | g.

29

Chapter 6. Pollard's p− 1 factorization method

Complexity Let m be the maximum prime number in P . Consider now the com-

putational cost of each single step discussed above:

- computing the gcd of step (iv) costs O (logN) each time is being performed;

- computing the e-th power of π in step (iii) is upperly bounded by the multiplication

for logm bits;

- computing the exponentiation in bπ acts instead over (mod N), hence belongs to

O (logN);

- all remaining steps are trivially O (1);

Therefore the time complexity for the above algorithm is O
(
m log(m) log2(N)

)
.

In the worst-case scenario, where p, q are safe primes1, that becomes

O
(√

N log(
√
N) log2(N)

)
= O

(√
N log3N

)
- assuming the prime pool P is big enough.

In the best-case scenario instead, where p is a Fermat prime, i.e. of the form 2n + 1,

the computation is incredibly fast:

O
(
log2N

)
Remark 6.0.1. What's crucial about this algorithm is the tradeo� that must be un-

dertaken in the choice of P . A pool with few primes would visibly reduce the running

time of Pollard's p− 1, but at the same time also the probability to reach a solution

would be reduced.

6.1 An Implementation Perspective

Algorithm 7 illustrates a naïve implementation of Pollard's p− 1 algorithm. Var-

ious re�nements are possible. Because gcds are more expensive than multiplication

(mod N), we could for example avoid most of those computation by accumulating

values of Q [17].

This means keeping a counter s, and multiply each new Q by itself in line 6. This

way the gcd(Q,N) = g can be checked on regular intervals, for example whenever

s | 100. If g = 1 ,we could backup the current state 〈π, b〉; if g = N , we roll back to

the latest state b and π, and then proceed one by one. Even if this change might seem

irrelevant as the asymptotic behaviour is the same for gcd and multiplication, reality

shows that the latter is more e�cient by a constant factor. There will be a chance to

see this improvement in chapter 8, where the same trick is adopted to speed up the

execution.
1 A prime p is said to be a safe prime i� p−1

2 is prime.

30

6.1. An Implementation Perspective

Parallelism As the inner loop of the p − 1 algorithm is intrinsecally serial, it is

di�cult to propose a good parallel solution. At best, parallelism can speed up the

multiple precision operations by a small factor, but this topic goes beyond the scope

of this study [18].

Still, it is possible to run the same instance of the proposed algorithm over multiple

nodes, hoping that a di�erent random base would pay back. Though, if both primes

are safe, there is no way this soulution could improve the running time.

Algorithm 7 Pollard's p− 1
Require: P , a prime pool

1: function factorize(N, b)

2: for π in P do . step (ii)

3: e← log
√
N// log π

4: for e times do . step (iii)

5: b← bπ (mod N)

6: Q← b− 1

7: g ← gcd(Q,N) . step (iv)

8: if g = N then return nil

9: else if g > 1 then return g

10:

11: function Pollard(N, e)

12: repeat

13: b
r←− N>2 . step (i)

14: p← factorize(N, b)

15: until p 6= nil

16: q ← N//p

17: return p, q

31

Williams' p + 1 factorization method

Analogously to Pollard's p− 1 factorization described in chapter 6, this method

will allow the determination of the divisor p of a number N , if p is such that p+1 has

only small prime power divisors. This method was presented in [19] together with

the results of the application of this method to a large number of composite numbers.

7.1 Background on Lucas Sequences

Let us call Lucas Sequence the recurrence relation with parameters τ, υ
U0 = 0

U1 = 1

Un = τUn−1 − υUn−2


V0 = 2

V1 = τ

Vn = τVn−1 − υVn−2

For respectively di�erent values of τ, υ, Lucas Sequences have speci�c names:

• U(τ = 1,υ = −1) Fibonacci numbers ;

• V (τ = 1,υ = −1) Lucas numbers ;

• U(τ = 3,υ = 2) Mersenne numbers.

For our purposes, Un is not necessary, and υ = 1.1 In order to simplify any later

theorem, we just omit Un, and assume υ = 1. Therefore, the latter expression be-

comes: 
V0 = 2

V1 = τ

Vn = τVn−1 − Vn−2

(7.1)

Two foundamental properties interpolate terms of Lucas Sequences, namely addi-

tion and duplication formulas:

Vn+m = VnVm − Vm−n (7.2)

V2n = V 2
n − 2 (7.3)

1 Williams justi�es this choice stating that choosing to compute a Un sequence is far more
computationally expensive than involving Vn; for what concerns υ, that simpli�es Lehmer's theorem
with no loss of generality. For further references, see [19] �3.

33

Chapter 7. Williams' p+ 1 factorization method

All these identities can be veri�ed by direct substitution with 7.1. What is inter-

esting about the ones of above, is that we can exploit them to e�ciently compute the

product Vhk if we are provided with Vk by considering the binary representation of the

number h. In other words, we can consider each bit of h, starting from second most

signi�cant one: if it is zero, we compute 〈V2k, V(2+1)k〉 using 7.3 and 7.2 respectively;

otherwise we compute 〈V(2+1)k, V2(k+1)〉 using 7.2 and 7.3.

Notice that V(2+1)k = V2k+k = V2kVk − Vk.

Algorithm 8 Lucas Sequence Multiplier

1: function Lucas(V, a,N)

2: V1 ← V

3: V2 ← V 2 − 2 (mod N)

4: for each bit b in a to right of the MSB do

5: if b is 0 then

6: V2 ← V1V2 − V (mod N) . by addition

7: V1 ← V 2
1 − 2 (mod N) . by duplication

8: else if b is 1 then

9: V1 ← V1V2 − V (mod N) . by addition

10: V2 ← V 2
2 − 2 (mod N) . by duplication

11: return V1

Finally, we need the following ([19] �2):

Theorem (Lehmer). Let ∆ be τ 2 − 4; if p is an odd prime and the Legendre symbol

ε = (∆/p), then:

V(p−ε)m ≡ 2 (mod p)

Remark 7.1.1. From number theory we know that the probability that P (ε = −1) =
1/2. There is no reason to restrict ourselves to (∆/p) = −1. In the alternative case

of ε = 1, the factorization yields the same factors as Pollard's p − 1 method, but

slowerly. For this reason it is advisable to �rst attempt the attack presented in the

previous chapter [19]whenever we look up for a p− 1 factorization.

7.2 Dressing up

At this point the factorization proceeds just by substituting the exponentiation

and Fermat's theorem with Lucas sequences and Lehmer's theorem introduced in the

preceeding section. If we �nd a Q satisfying p + 1 | Q or p − 1 | Q then, due to

Lehmer's theorem p | VQ − 2 and thus gcd(VQ − 2, N) is a non-trivial divisor of N .

34

7.2. Dressing up

(i) Take a random, initial τ and let it the base V1.

(ii) Take the i-th prime in the pool P , and call it π;

(iii) assuming the current state is Vk, compute the successive terms of the sequence

using additions and multiplications formula, until you have Vπk.

(iv) just like with the Pollard p− 1 method, repeat step (iii) for e = d logN
log π
e times;

(v) select Q = Vk − 2 (mod N) and check the gcd with N , hoping this leads to one

of the two prime factors:

g = gcd(Q,N), 1 < g < N . (7.4)

If so, than we have �nished, since g itself and N
g
are the two primes factorizing

the public modulus. Otherwise, if g = 1 we go back to to (ii), since p − 1 - Q
yet; if g = N start back from scratch, as pq | g.

Algorithm 9 Williams p+ 1 factorization
Require: P , the prime pool

1: function Factorize(N, τ)

2: V ← τ

3: for π in P do . step (i)

4: e← log
√
N// log π

5: for e times do

6: V ← lucas(V, π,N) . step (ii)

7: Q← V − 2

8: g ← gcd(Q,N) . step (iii)

9: if g = 1 then return nil

10: else if g > 1 then return g,N//g

35

Pollard's ρ factorization method

A Monte Carlo factorization method, published by J. M. Pollard in [20], consists

into identifying a periodically recurrent sequence of integers within a random walk

(mod N) that could leak one of the two factors.

Consider a function f from S to S, where S = {0, 1, . . . , q − 1} and q ∈ P. Let s
be a random element in S, and consider the sequence

s, f(s), f(f(s)), . . .

Since f acts over a �nite set, it is clear that this sequence must eventually repeat,

and become cyclic. We might diagram it with the letter ρ, where the tail represent

the aperiodic part, or epacts, and the oval the cyclic part, or period.

x1

xi−2

xi−1

xi ≡ xj

xi+1

xi+2

xj−1

period (mod q)

Now, consider N = pq. Let F (x) be any function generating pseudorandom

integers 〈x1, x2, . . .〉, and let f(x) = F (x) (mod q). As we said above, without any

luck, there will be a pair 〈xi, xj〉 generated by F such that xi ≡ xj (mod q), but

xi 6= xj.

Therefore, in order to factorize N , we proceed as follows: starting from a random

s, we iteratively apply F reduced modulo N . Whenever we �nd a period, if gcd(xi−
xj, N) > 1 then we found a non-trivial factor of N .

37

Chapter 8. Pollard's ρ factorization method

Choosing the function Ideally, F should be easily computable, but at the same

time random enough to reduce as much as possible the epacts [8] �5.2.1. Any

quadratic function F (x) = x2 + b should be enough1, provided that b ∈ N \ {0, 2}.
For example, [20] uses x2 − 1, meanwhile we are going to choose F (x) = x2 + 1.

Finding the period The trivial way to discover a period would be to test xi with

all xj, j < i. Though, in [9] �3.1, Knuth gives a simple and elegant algorithm,

attributed to Floyd, for �nding a multiple of the period. This algorithm is the same

one �nally adopted by Pollard in [20].

Theorem (Floyd). Given an ultimately periodic sequence, in the sense that there

exists numbers λ and µ for which the values:

X0, X1, . . . , Xµ, . . . , Xµ+λ−1

are distinct, but Xn+λ = Xn when n ≥ µ, then there exists an µ < n < µ + λ such

that Xn = X2n.

Proof. First, if Xn = X2n, then the sequence is obviously periodic from X2n onward,

possibly even earlier. Conversely, it is true that Xn = Xm (n ≥ µ) for m = n +

kλ, k ∈ N. Hence, there will eventually be an n such that Xn = X2n if and only if

n− µ is a multiple of λ. The �rst such value happens for n = (λ+ 1)bµ/λc.

The immediate consequence of this is that we can �nd a collision simply by check-

ing gcd(x2i − xi, N) > 1 for incremental i.

Brent's Improvement In 1979, Brent discovered an entire family of cycle-�nding

algorithms whose optimal version resulted to be 36% faster than Floyd's one [21].

Instead of looking for the period of the sequence using x2i − xi, Brent considers

|xj − x2k | for 3 · 2k−1 < j ≤ 2k+1, resulting in fewer operations required by the

algorithm. Pragmatically, this boils down to compare:

k = 0 j ∈ {1 + 1 . . . 2} |x1 − x2|
k = 1 j ∈ {3 + 1 . . . 4} |x2 − x4|
k = 2 j ∈ {6 + 1 . . . 8} |x4 − x7|, |x4 − x8|
k = 3 j ∈ {12 + 1, . . . 16} |x8 − x13|, |x8 − x14|, . . ., |x8 − x16|
k = 4 j ∈ {24 + 1, . . . 32} |x16 − x25|, . . ., |x16 − x32|
...

...
...

A Pollard's ρ variant that implements Brent's cycle-�nding algorithm instead of

Floyd's one runs around 25% faster on average [21].

1 Note that this has been only empirically veri�ed, and so far not been proved ([14], p. 177)

38

8.1. Complexity

8.1 Complexity

[14] presents a nice proof of the average complexity of this algorithm, based on

the birthday paradox.

The Birthday Paradox. How many persons needs to be selected at random in order

that the probability of at least two of them having the same birthday exceeds 1/2?

Solution. The probability that ε di�erent persons have di�erent birthdays is:(
1− 1

365

)(
1− 2

365

)(
1− 3

365

)
· · ·
(

1− ε− 1

365

)
=

365!

365ε(365− ε)!

This expression becomes < 1/2 for ε ≥ 23.

We can obviously substitute the 365 with any set of cardinality ζ to express the

probability that a random function from Zε to Zζ is injective. However, back to our

particular case, we want to answer the question:

How many random numbers do we have to run through before �nding at least two

integers equivalent mod q?

Using the same reasoning presented above over the previously de�ned function

f(x) : S → S, we will discover that after ≈ 1.18
√
q steps the probability to have

fallen inside the period is 1/2. Since any of the two primes factoring N is bounded

above by
√
N , we will �nd a periodic sequence, and thus a factor, in time O

(
4
√
N
)
.

8.2 An Implementation Perspective

The initial algorithm described by Pollard [20] and consultable immediately below,

looks for the pair 〈xi, x2i〉 such that gcd(x2i−xi, N) > 1. This is achieved by keeping

two variables x, y and respectively updating them via x← f(x) and y ← f(f(y)).

Remark 8.2.1. It is intresting to see how in its basic version, Pollard's ρ method just

needs 3 variables to preserve the state. This places it among the most parsimonious

factorization algorithms in terms of memory footprint.

An immediate improvement of this algorithm would be to occasionally compute

Euclid's algorithm over the accumulated product to save some computation cycles,

just as we saw in section 6.1. The next code fragment - algorithm 11 - adopts this

trick together with Brent's cycle-�nding variant ([21]�7).

Parallelism Unfortunately, a parallel implementation of the ρ algorithm would not

provide a linear speedup.

39

Chapter 8. Pollard's ρ factorization method

Algorithm 10 Pollard's ρ factorization

1: function rho(N, e)

2: x
r←− N

3: y ← x

4: g ← 1

5: while g = 1 do

6: x← x2 + 1 (mod N)

7: y ← y4 + 2y2 + 2 (mod N)

8: g ← gcd(|x− y|, N)

9: if g = N then return nil

10: else return g,N//g

The computation of the xi sequence is intrinsecally serial; the only plausible ap-

proach to parallelism would be to try several di�erent pseudorandom sequences, in

which case m di�erent machines processing m di�erent sequences in parallel would

be no more than O (
√
m) e�cient ([18] �3).

40

8.2. An Implementation Perspective

Algorithm 11 Pollard-Brent's factorization

1: function rho(N, e)

2: r ← 1

3: q ← 1 . the accumulated gcd

4: g ← 1

5: m← 100 . steps before checking for gcd

6: y
r←− N<N

7: while g = 1 do

8: x← y

9: for r times do

10: y ← y2 + 1 (mod N)

11: k ← 0

12: while k ≤ r and g = 1 do

13: ys← y . backup state

14: for min{m, r − k} times do . accumulate values to test later

15: y ← y2 + 1 (mod N)

16: q ← q · |x− y| (mod N)

17: k ← k +m

18: g ← gcd(q,N)

19: r ← r � 1

20: if g = N then . too far; fall back to latest epoch

21: repeat

22: ys← ys2 + 1 (mod N)

23: g ← gcd(N, |x− ys|)
24: until g > 1

25: if g = 1 then return nil

26: else return g,N//g

41

Dixon's factorization method

[22] describes a class of �probabilistic algorithms� for �nding a factor of any

composite number, at a sub-exponential cost. They basically consists into taking

random integers r in {1, . . . , N} and look for those where r2 mod N is smooth. If

enough are found, then those integers can somehow be assembled, and so a fatorization

of N attemped.

9.1 Interlude

During the latest century there has been a huge e�ort to approach the problem

formulated by Fermat 4.1 from di�erent perspecives. This led to an entire family of

algorithms, like Quadratic Sieve, Dixon,

The core idea is still to �nd a pair of perfect squares whose di�erence can factorize

N , but maybe Fermat's hypotesis can be made weaker.

Kraitchick was the �rst one popularizing the idea that instead of looking for inte-

gers 〈x, y〉 such that x2 − y2 = N it is su�cient to look for multiples of N :

x2 − y2 ≡ 0 (mod N) (9.1)

and, once found, claim that gcd(N, x ± y) are non-trial divisors of N just as we did

in 4.1. Kraitchick did not stop here: instead of trying x2 ≡ y2 (mod N) he kept the

value of previous attempt, and tries to �nd a product of such values which is also a

square. So we have a sequence

〈x0, . . . , xk〉 | ∀i ≤ k x2i −N is a perfect square (9.2)

and hence ∏
i

(x2i −N) = y2

that mod N is equivalent to:

y2 ≡
∏
i

(x2i −N) ≡
(∏

i

xi
)2

(mod N) (9.3)

43

Chapter 9. Dixon's factorization method

and voilà our congruence of squares ([23] �4). For what concerns the generation of

xi with the property 9.2, they can simply be taken at random and tested using trial

division.

Brillhart and Morrison later proposed ([24] p.187) a better approach than trial

division to �nd such x. Their idea aims to ease the enormous e�ort required by the

trial division. In order to achieve this. they introduce a factor base B and generate

random x such that x2 − N is B-smooth. Recalling what we anticipated in 3, B is

a precomputed set of primes pi ∈ P. This way the complexity of generating a new x

is dominated by O (|B|). Now that the right side of 9.3 has been satis�ed, we have

to select a subset of those x so that their product can be seen as a square. Consider

an exponent vector vi = (α0, α1, . . . , αr−1) with r = |B| + 1 associated with each xi,

where

αj =

1 if pj divides xi to an odd power

0 otherwise
(9.4)

for each 1 ≤ j < r. There is no need to restrict ourselves for positive values of x2−N ,

so we are going to use α0 to indicate the sign -1 if negative, 0 otherwise. This bene�t

has a neglegible cost: we have to add the non-prime −1 to our factor base B.
Let now M ∈ F(f×r)

2 , for some f > r, be the rectangular matrix having per each

i-th row the vi associated to xi: this way each matrix element mij will be the j-th

component of vi. We are interested in �nding set(s) of the subsequences of xi whose

product always have even powers (9.3). Turns out that this is equivalent to look for

the set of vectors {w | wM = 0} = ker(M) by de�nition of matrix multiplication in

F2.

Dixon Morrison and Brillhart's ideas of [24] were actually used for a slightly dif-

ferent factorization method, employing continued fractions instead of the square dif-

ference polynomial. Dixon simply ported these to the square problem, achieving a

probabilistic factorization method working at a computational cost asymptotically

better than all other ones previously described: O
(

exp{β(logN log logN)
1/2}
)
for

some constant β > 0 [22].

9.2 Breaching the kernel

The following reduction procedure, extracted from [24], is a forward part of the

Gauss-Jordan elimination algorithm (carried out from right to left), and can be used

to determine whether the set of exponent vectors is linearly dependent.

44

9.3. An Implementation Perspective

For each vi described as above, associate a companion history vector

hi = (β0, β1, . . . , βf−1), where for 0 ≤ m < f :

βm =

1 if m = i

0 otherwise

At this point, we have all data structures needed:

Reduction Procedure

(i) Set j = r − 1;

(ii) �nd the �pivot vector�, i.e. the �rst vector vi, 0 ≤ i < f such that αj = 1. If

none is found, go to (iv);

(iii) (a) replace every following vector vm, i < m < f whose rightmost 1 is the

j-th component, by the sum vi ⊕ vm;

(b) whenever vm is replaced by vi⊕vm, replace also the associated history vector
hm with hi ⊕ hm;

(iv) Reduce j by 1. If j ≥ 0, return to (ii); otherwise stop.

Algorithm 12 formalizes concepts so far discussed, by presenting a function ker,

discovering linear dependencies in any rectangular matrix M ∈ F(f×r)
2 and storing

dependencies into a history matrix H.

Remark 9.2.1. We are proceeding from right to left in order to conform with [24].

Instead, their choice lays on optimization reasons, which does not apply any more to

a modern calculator.

Remark 9.2.2. The yield statement in line 12 of algorithm 12 has the same semantics

as in the python programming language. It is intended to underline the fact that each

{µ | Hi,µ = 1} can lead to a solution for 9.2, and therefore their generation can be

performed asynchronously.

9.3 An Implementation Perspective

Before gluing all toghether, we need one last building brick necessary for Dixon's

factorization algorithm: a smooth(x) function. In our speci�c case, we need a function

45

Chapter 9. Dixon's factorization method

Algorithm 12 Reduction Procedure

1: function Ker(M)

2: H ← Id(f × f) . the initial H is the identity matrix

3: for j = r − 1 downto 0 do . reduce

4: for i = 0 to f − 1 do

5: if Mi,j = 1 then

6: for i′ = i+ 1 to f − 1 do

7: if Mi′,k = 1 then

8: Mi′ = Mi ⊕Mi′

9: Hi′ = Hi ⊕Hi′

10: break

11: for i = 0 to f − 1 do . yield linear dependencies

12: if Mi = (0, . . . , 0) then yield {µ | Hi,µ = 1}

that, given as input a number x, returns nil if x2 − N is not B-smooth. Otherwise,

returns a vector v = (α0, . . . , αr) such that each αj is de�ned just as in 9.4. Once we

have established B, its implementation comes straightfoward.

How do we choose B? It's not easy to answer: if we choose B small, we will rarely

�nd x2 −N smooth. If we chose it large, attempting to factorize x2 −N with B will

pay the price of iterating through a large set. [8] �6.1 �nds a solution for this problem

by employing complex analytic number theory. As a result, the ideal value for |B| is
e
√
lnN ln lnN .

Algorithm 13 Discovering Smoothness
Require: B, the factor base
1: function smooth(x)

2: v ← (α0 = 0, . . . , α|B| = 0)

3: if x < 0 then α0 ← 1

4: for i = 1 to |B| do
5: while Bi | x do
6: x← x//Bi
7: αi ← αi ⊕ 1

8: if x = 1 then

9: return v

10: else

11: return nil

46

9.3. An Implementation Perspective

Algorithm 14 Dixon
Require: B, the factor base
1: function dixon(N, e)

2: i← 0

3: f
r←− N>|B| . �nding linearity requires redundance

4: while i < f do . search for suitable pairs

5: xi
r←− N<N

6: yi ← x2i −N
7: vi ← smooth(yi)

8: if vi 6= nil then i← i+ 1

9: M ← matrix(v0, . . . , vf−1)

10: for λ = {µ0, . . . , µk} in ker(M) do . get relations

11: x←
∏

µ∈λ xµ (mod N)

12: y, r ← isqrt(
∏

µ∈λ yµ (mod N))

13: g ← gcd(x+ y,N)

14: if 1 < g < N then

15: p← g

16: q ← N//p

17: return p, q

Parallelism Dixon's factorization is ideally suited to parallel implementation. Sim-

ilarly to other methods like ECM and MPQS, treated in [18] �6.1, we can linearly im-

prove the running time by distributing across many nodes the discovery of B-smooth

numbers.

Depending on the granularity we desire - and the number of nodes available, we

can even act on the ker function - but less easily. This idea would boil down to the

same structure we discussed with Wiener's attack: one node - the producer - discovers

linear dependencies, while the others - the consumers - attempt to factorize N .

Certainly, due to the probabilistic nature of this algorithm, we can even think

about running multiple instances of the same program. This solution is fairly e�ective

in proportion to the development cost.

47

An Empirical Study

Excluding Dixon's factorization method, all attacks analyzed so far exploit some

peculiarities of a candidate RSA public key 〈N, e〉 in order to recover the private

exponent. Summarizingly:

• Pollard's p − 1 attack works only if the predecessor of any of the two primes

factorizing the public modulus is composed of very small prime powers;

• Williams' p + 1 attack works under similar conditions - on the predecessor or

the successor of any of the two primes ;

• Fermat's factorization is valuable whenever the two primes p and q are really

close to each other;

• Pollard's ρ method is best whenever one of the two primes is strictly lower than

the other;

• Wiener's attack is guaranteed to work on small private exponents.

Dixon's factorization method instead, being a general-purpose factorization algo-

rithm, can be employed to measure the strength of a RSA keypair: the more relations

(satisfying 9.3) are found, the less it is assumed to be resistant.

Given these hypothesis, it has been fairly easy to produce valid RSA candidate

keys that can be broken using the above attacks. They have been used to assert the

correctness of the implementation.

On the top of that, there has been a chance to test the software under real con-

ditions: we downloaded the SSL keys (if any) of the top one million visited websites,

and survey them with the just developed software. This not only gave us the oppor-

tunity to survey the degree of security on which the internet is grounded today, but

also led to a deeper understanding of the capacities and limits of the most widespread

libraries o�ering crypto nowadays.

49

Chapter 10. An Empirical Study

10.1 To skim o� the dataset

What has been most scandalous above all was to discover that more than half of

the most visited websites do not provide SSL connection over port 443 - reserved for

HTTPS according to IANA [25]. To put it in numbers, we are talking about 533, 000

websites either unresolved or unreachable in 10 seconds. As a side note for this, many

websites (like baidu.com or qq.com) keep a TCP connection open without writing

anything to the channel, requiring us to adopt a combination of non-blocking socket

with the select() system call in order to drop any empty communication. It would

be interesting to investigate more on these facts, asking ourselves how many of those

unsuccessful connections are actually wanted from the server, and how many dropped

for censorship reasons; there is enough room for another project.

Of the remaining 450, 000 keys, 21 were using di�erent ciphers than RSA. All

others represent the dataset upon which we worked on.

10.2 To count

Once all valuable certi�cate informations have been stored inside a database,

almost any query can be performed to get a statistically valuable measure of degree

of magnitude to which some conditions are satis�ed. What follows now is a list of

commented examples that we believe are relevant parameters for understanding of

how badly internet is con�gured today.

The most proli�c number we see here, 65537 in hexadecimal, is the fourth Fermat

number and no other than the largest known prime of the form 22n + 1. Due to its

composition, it has been advised by NIST as default public exponent, and successfully

implemented in most software, such as OpenSSL .

Sadly, a negligible number of websites is using low public exponents, which makes

the RSA key vulnerable to Coppersmith's attack; though, this topic goes beyond the

scope of this research and hence has not been analyzed further.

50

10.2. To count

What is interesting to see here is that an enormous portion of our dataset shared

the same public key, pushing down the number of expected keys of one order of

magnitude. Reasons for this are mostly practical: it is extremely frequent to have

blogs hosted on third-party services such as �Blogspot� or �Wordpress� which always

provide the same X.509 certi�cate, as they belong to an unique organization. Though

improbable, it is even possible that exists a millesimal portion of di�erent websites

sharing the same public key due to a bad cryptographically secure random number

generator, and therefore also the same private key. Such a case has been already

investigated in [26].

Here we go. A suprisingly consistent number of websites provides certi�cates �lled

with dummy, wrong, or even testing informations.

Some do have non-printable bytes in the common name �eld.

Some are certi�ed from authorities.

Some are even gonvernmental entities.

51

Chapter 10. An Empirical Study

According to [27] �3, table 2, all RSA keys of bitlength less than 1024 are to

be considered deprecated at the end of 2013 and shall no more be issued since the

beginning of this year. Not di�erently from the above results, the remark has been

globally adopted, yet still with a few exceptions: around a dozen of non-self-signed

certi�cates with a 1024 RSA key appears to have been issued in 2014.

10.3 The proof and the concept

At the time of this writing, we have collected the output of only two mathematical

tests performed in the university cluster.

Wiener. The attack described in chapter 5 was the �rst employed, being the fastest

one above all others. Recalling the di�erent public exponents we probed and discussed

in the preceeding section (all ≤ 65537), we expected all private expenents to be

> 1/3
4
√
N and therefore not vulnerable to this particular version of Wiener's attack.

Indeed, we found no weak keys with respect to this attack. Though, as pointed out

in [1] �3, there is still the possibilty that the public keys we collected could be broken

employing some variants of it.

GCD. On the wave of [26], whe attempted also to perform the gcd of every possible

pair of dinstinct public modulus present in the dataset. In contrast to our expecta-

tions, this test led to no prime factor leaked, for any key pair. We have reasons to

believe this depends on the relatively small size of our dataset, with respect to the

one used in [26].

52

Conclusions

Everytime we surf the web, we share our communication channel with lots of

entities around the globe. End-to-end encryption protocols such as TLS can provide

the security properties that we often take as granted, like con�dentiality, integrity,

and authenticity ; though, these holds only if we trust the authorities certifying the

end entity.

There is this mindless thinking that whenever we see that small lock icon in

the browser's url bar, somebody is telling us the connection is safe. There is some

authority out there telling what to do, and we should be thinking more about what

these authorities are and what they are doing. This issue is no more a technical

problem, but instead is becoming more and more a social and political problem. It

is our responsability as citzens to do something about that.

53

Bibliography

[1] D. Boneh, R. Rivest, A. Shamir, L. Adleman, et al., �Twenty years of attacks on

the rsa cryptosystem,� Notices of the AMS, vol. 46, no. 2, pp. 203�213, 1999.

[2] M. Cooper, Y. Dzambasow, P. Hesse, S. Joseph, and R. Nicholas, �Rfc 4158:

Certi�cation path building.�

[3] T. Dierks and C. Allen, �Rfc 2246: The tls protocol version 1.0.�

[4] P. E. Jesse, �Is the ssliverse a safe place? an update on e�'s ssl observatory

project.� [27c3], 2010.

[5] S. Turner and T. Polk, �Rfc6176: Prohibiting secure sockets layer (ssl) version

2.0.�

[6] S. Vaudenay, �Security �aws induced by cbc padding - applications to ssl, ipsec,

wtls,� pp. 534�546, 2002.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms. The MIT Press, 3rd ed., 2009.

[8] R. Crandall, C. Pomerance, R. Crandall, and C. Pomerance, Prime numbers: a

computational perspective. Second Edition. Cambridge, MA, USA: Birkhauser

Boston Inc., 2005.

[9] D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd Ed.): Seminu-

merical Algorithms. Boston, MA, USA: Addison-Wesley Longman Publishing

Co., Inc., 1997.

[10] R. Bombelli, L'Algebra. Mathematical Association of America, 1572.

[11] E. W. Dijkstra, A Discipline of Programming. Upper Saddle River, NJ, USA:

Prentice Hall PTR, 1st ed., 1997.

[12] R. L. Rivest, A. Shamir, and L. Adleman, �A method for obtaining digital signa-

tures and public-key cryptosystems,� Commun. ACM, vol. 21, pp. 120�126, Feb.

1978.

55

Bibliography

[13] NIST, �Fips pub 186-3: Digital signature standard,� 2009.

[14] H. Riesel, Prime Numbers and Computer Methods for Factorization. Cambridge,

MA, USA: Birkhauser Boston Inc., 1985.

[15] M. J. Wiener, �Cryptanalysis of short rsa secret exponents,� IEEE Transactions

on Information Theory, vol. 36, pp. 553�558, 1990.

[16] I. Smeets, �On continued fraction algorithms,� 2010.

[17] J. M. Pollard, �Theorems on factorization and primality testing,� Mathematical

Proceedings of the Cambridge Philosophical Society, vol. 76, pp. 521�528, 11 1974.

[18] R. P. Brent, �Parallel algorithms for integer factorisation,� Number Theory and

Cryptography (edited by JH Loxton), London Mathematical Society Lecture Note

Series, vol. 154, pp. 26�37, 1990.

[19] H. C. Williams, �A p + 1 method of factoring,� Mathematics of Computation,

vol. 39, no. 159, pp. pp. 225�234, 1982.

[20] J. Pollard, �A monte carlo method for factorization,� BIT Numerical Mathemat-

ics, vol. 15, no. 3, pp. 331�334, 1975.

[21] R. P. Brent, �An improved monte carlo factorization algorithm,� BIT Numerical

Mathematics, vol. 20, no. 2, pp. 176�184, 1980.

[22] J. D. Dixon, �Asymptotically fast factorization of integers,� Mathematics of Com-

putation, vol. 36, no. 153, pp. pp. 255�260, 1981.

[23] A. Odlyzko, �Discrete logarithms: The past and the future,� Towards a Quarter-

Century of Public Key Cryptography, pp. 59�75, 2000.

[24] M. A. Morrison and J. Brillhart, �A method of factoring and the factorization of

F7,� Mathematics of Computation, vol. 29, no. 129, pp. 183�205, 1975.

[25] I. A. N. Authority, �Service names port numbers.� 2014.

[26] A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and C. Wachter,

�Ron was wrong, whit is right.,� IACR Cryptology ePrint Archive, vol. 2012, p. 64,

2012.

[27] E. Barker and A. Roginsky, �Transitions: Recommendation for transitioning

the use of cryptographic algorithms and key lengths,� NIST Special Publication,

vol. 800, p. 131A, 2011.

56

	Preface
	I Prolegomena
	The Secure Layer
	The handshake protocol
	The record protocol
	What is inside a certificate
	Remarks among SSL/TLS versions

	Mathematical Principles
	Algorithmic Complexity Notation
	Euclid's Greatest Common Divisor
	Square Root
	The RSA Cipher

	II Questions
	Fermat's factorization method
	An Implementation Perspective
	Thoughts about a parallel solution

	Wiener's cryptanalysis method
	Background on Continued Fractions
	Continued Fraction Algorithm applied to RSA
	An Implementation Perspective

	Pollard's p-1 factorization method
	An Implementation Perspective

	Williams' p+1 factorization method
	Background on Lucas Sequences
	Dressing up

	Pollard's factorization method
	Complexity
	An Implementation Perspective

	Dixon's factorization method
	Interlude
	Breaching the kernel
	An Implementation Perspective

	An Empirical Study
	To skim off the dataset
	To count
	The proof and the concept

	Conclusions

