| 
															
																@@ -54,8 +54,8 @@ Therefore, the latter expression becomes: 
															 | 
														
													
												
													
														
															| 
															 | 
															
																  
															 | 
															
															 | 
															
																  
															 | 
														
													
												
													
														
															| 
															 | 
															
																 Three foundamental properties interpolate terms of Lucas Sequences: 
															 | 
															
															 | 
															
																 Three foundamental properties interpolate terms of Lucas Sequences: 
															 | 
														
													
												
													
														
															| 
															 | 
															
																 \begin{align} 
															 | 
															
															 | 
															
																 \begin{align} 
															 | 
														
													
												
													
														
															| 
															 | 
															
																-  & V_{2n+1} = \tau V_n - V_{n-1} \label{eq:ls:2n+1}\\ 
															 | 
															
															 | 
															
																 
															 | 
														
													
												
													
														
															| 
															 | 
															
																-  & V_{2n} = V_n^2 - 2 \label{eq:ls:2n}\\ 
															 | 
															
															 | 
															
																 
															 | 
														
													
												
													
														
															| 
															 | 
															
																 
															 | 
															
															 | 
															
																+  & V_{2n+1} = \tau V_n^2 - V_n V_{n-1} - \tau \label{eq:ls:2n+1} \\ 
															 | 
														
													
												
													
														
															| 
															 | 
															
																 
															 | 
															
															 | 
															
																+  & V_{2n} = V_n^2 - 2 \label{eq:ls:2n} \\ 
															 | 
														
													
												
													
														
															| 
															 | 
															
																   & V_{2n-1} = V_nV_{n-1} - \tau \label{eq:ls:2n-1} 
															 | 
															
															 | 
															
																   & V_{2n-1} = V_nV_{n-1} - \tau \label{eq:ls:2n-1} 
															 | 
														
													
												
													
														
															| 
															 | 
															
																 \end{align} 
															 | 
															
															 | 
															
																 \end{align} 
															 | 
														
													
												
													
														
															| 
															 | 
															
																  
															 | 
															
															 | 
															
																  
															 | 
														
													
												
											
												
													
														
															 | 
															
																@@ -78,7 +78,7 @@ significant one: if it is zero, we use the multiplication formula 
															 | 
														
													
												
													
														
															| 
															 | 
															
																           \Comment by equation \ref{eq:ls:2n} 
															 | 
															
															 | 
															
																           \Comment by equation \ref{eq:ls:2n} 
															 | 
														
													
												
													
														
															| 
															 | 
															
																           \State $V' \gets VV' - \tau$ 
															 | 
															
															 | 
															
																           \State $V' \gets VV' - \tau$ 
															 | 
														
													
												
													
														
															| 
															 | 
															
																           \Comment by equation \ref{eq:ls:2n-1} 
															 | 
															
															 | 
															
																           \Comment by equation \ref{eq:ls:2n-1} 
															 | 
														
													
												
													
														
															| 
															 | 
															
																-          \State $v \gets V''$ 
															 | 
															
															 | 
															
																 
															 | 
														
													
												
													
														
															| 
															 | 
															
																 
															 | 
															
															 | 
															
																+          \State $V \gets V''$ 
															 | 
														
													
												
													
														
															| 
															 | 
															
																         \ElsIf{$a$ is odd} 
															 | 
															
															 | 
															
																         \ElsIf{$a$ is odd} 
															 | 
														
													
												
													
														
															| 
															 | 
															
																           \State $V'' \gets \tau V^2 - VV' - \tau$ 
															 | 
															
															 | 
															
																           \State $V'' \gets \tau V^2 - VV' - \tau$ 
															 | 
														
													
												
													
														
															| 
															 | 
															
																           \Comment by equation \ref{eq:ls:2n+1} 
															 | 
															
															 | 
															
																           \Comment by equation \ref{eq:ls:2n+1} 
															 | 
														
													
												
											
												
													
														
															 | 
															
																@@ -156,8 +156,8 @@ if $g = N$ start back from scratch, as $pq \mid g$. 
															 | 
														
													
												
													
														
															| 
															 | 
															
																   \begin{algorithmic}[1] 
															 | 
															
															 | 
															
																   \begin{algorithmic}[1] 
															 | 
														
													
												
													
														
															| 
															 | 
															
																     \Require $\mathcal{P}$, the prime pool 
															 | 
															
															 | 
															
																     \Require $\mathcal{P}$, the prime pool 
															 | 
														
													
												
													
														
															| 
															 | 
															
																     \Function{Factorize}{$N, \tau$} 
															 | 
															
															 | 
															
																     \Function{Factorize}{$N, \tau$} 
															 | 
														
													
												
													
														
															| 
															 | 
															
																-      \State $V \gets 2$ 
															 | 
															
															 | 
															
																 
															 | 
														
													
												
													
														
															| 
															 | 
															
																-      \State $V' \gets \tau$ 
															 | 
															
															 | 
															
																 
															 | 
														
													
												
													
														
															| 
															 | 
															
																 
															 | 
															
															 | 
															
																+      \State $V \gets \tau$ 
															 | 
														
													
												
													
														
															| 
															 | 
															
																 
															 | 
															
															 | 
															
																+      \State $V' \gets 2$ 
															 | 
														
													
												
													
														
															| 
															 | 
															
																       \For{$p_i \strong{ in } \mathcal{P}$} 
															 | 
															
															 | 
															
																       \For{$p_i \strong{ in } \mathcal{P}$} 
															 | 
														
													
												
													
														
															| 
															 | 
															
																       \Comment step (i) 
															 | 
															
															 | 
															
																       \Comment step (i) 
															 | 
														
													
												
													
														
															| 
															 | 
															
																         \State $e \gets \log \sqrt{N} // \log p_i$ 
															 | 
															
															 | 
															
																         \State $e \gets \log \sqrt{N} // \log p_i$ 
															 |