|
@@ -54,8 +54,8 @@ Therefore, the latter expression becomes:
|
|
|
|
|
|
Three foundamental properties interpolate terms of Lucas Sequences:
|
|
Three foundamental properties interpolate terms of Lucas Sequences:
|
|
\begin{align}
|
|
\begin{align}
|
|
- & V_{2n+1} = \tau V_n - V_{n-1} \label{eq:ls:2n+1}\\
|
|
|
|
- & V_{2n} = V_n^2 - 2 \label{eq:ls:2n}\\
|
|
|
|
|
|
+ & V_{2n+1} = \tau V_n^2 - V_n V_{n-1} - \tau \label{eq:ls:2n+1} \\
|
|
|
|
+ & V_{2n} = V_n^2 - 2 \label{eq:ls:2n} \\
|
|
& V_{2n-1} = V_nV_{n-1} - \tau \label{eq:ls:2n-1}
|
|
& V_{2n-1} = V_nV_{n-1} - \tau \label{eq:ls:2n-1}
|
|
\end{align}
|
|
\end{align}
|
|
|
|
|
|
@@ -78,7 +78,7 @@ significant one: if it is zero, we use the multiplication formula
|
|
\Comment by equation \ref{eq:ls:2n}
|
|
\Comment by equation \ref{eq:ls:2n}
|
|
\State $V' \gets VV' - \tau$
|
|
\State $V' \gets VV' - \tau$
|
|
\Comment by equation \ref{eq:ls:2n-1}
|
|
\Comment by equation \ref{eq:ls:2n-1}
|
|
- \State $v \gets V''$
|
|
|
|
|
|
+ \State $V \gets V''$
|
|
\ElsIf{$a$ is odd}
|
|
\ElsIf{$a$ is odd}
|
|
\State $V'' \gets \tau V^2 - VV' - \tau$
|
|
\State $V'' \gets \tau V^2 - VV' - \tau$
|
|
\Comment by equation \ref{eq:ls:2n+1}
|
|
\Comment by equation \ref{eq:ls:2n+1}
|
|
@@ -156,8 +156,8 @@ if $g = N$ start back from scratch, as $pq \mid g$.
|
|
\begin{algorithmic}[1]
|
|
\begin{algorithmic}[1]
|
|
\Require $\mathcal{P}$, the prime pool
|
|
\Require $\mathcal{P}$, the prime pool
|
|
\Function{Factorize}{$N, \tau$}
|
|
\Function{Factorize}{$N, \tau$}
|
|
- \State $V \gets 2$
|
|
|
|
- \State $V' \gets \tau$
|
|
|
|
|
|
+ \State $V \gets \tau$
|
|
|
|
+ \State $V' \gets 2$
|
|
\For{$p_i \strong{ in } \mathcal{P}$}
|
|
\For{$p_i \strong{ in } \mathcal{P}$}
|
|
\Comment step (i)
|
|
\Comment step (i)
|
|
\State $e \gets \log \sqrt{N} // \log p_i$
|
|
\State $e \gets \log \sqrt{N} // \log p_i$
|