|
@@ -16,268 +16,60 @@
|
|
|
* exponent.
|
|
|
*/
|
|
|
|
|
|
-#include <assert.h>
|
|
|
-#include <stdlib.h>
|
|
|
+#include <stdint.h>
|
|
|
#include <strings.h>
|
|
|
|
|
|
#include <openssl/bn.h>
|
|
|
|
|
|
-#include "qa/questions/qarith.h"
|
|
|
-#include "qa/questions/qstrings.h"
|
|
|
#include "qa/questions/questions.h"
|
|
|
+#include "qa/questions/qdixon.h"
|
|
|
|
|
|
-#define EPOCHS 100
|
|
|
-#define REPOP_EPOCHS 50
|
|
|
-#define BPOOL_EXTEND_STEP 42
|
|
|
-#define BPOOL_STARTING_BITS 7
|
|
|
-#define RPOOL_EXTEND_STEP 42
|
|
|
-#define U_SIZE 10
|
|
|
|
|
|
-#define qa_rand rand
|
|
|
-
|
|
|
-static BIGNUM* zero;
|
|
|
-
|
|
|
-/**
|
|
|
- * \struct dixon_number_t
|
|
|
- * \brief Auxiliary structure holding informations for R_pool.
|
|
|
- */
|
|
|
-typedef struct dixon_number {
|
|
|
- BIGNUM *r; /**< the random number which have been chosen */
|
|
|
- BIGNUM *s; /**< s ≡ r² (mod N) */
|
|
|
- BIGNUM **v; /**< a cached vectors holding the exponents for the prime
|
|
|
- * factorization of s. */
|
|
|
-} dixon_number_t;
|
|
|
-
|
|
|
-/** Pool of random numbers, i.e. the set R. */
|
|
|
-dixon_number_t *R_pool = NULL;
|
|
|
-
|
|
|
-static size_t R_size = 0;
|
|
|
-
|
|
|
-/** Pool of prime numbers, i.e. B, the factor base. */
|
|
|
-static BIGNUM** B_pool = NULL;
|
|
|
-static size_t B_size = 0;
|
|
|
-
|
|
|
-
|
|
|
-/**
|
|
|
- * \brief Extends the factor base, and then adjusts R_pool
|
|
|
- *
|
|
|
- */
|
|
|
-static void extend_B_pool(int max_bits)
|
|
|
+matrix_t*
|
|
|
+identity_matrix_new(int d)
|
|
|
{
|
|
|
- size_t i, j, old_B_size;
|
|
|
- int bits;
|
|
|
-
|
|
|
- old_B_size = B_size;
|
|
|
- B_size += BPOOL_EXTEND_STEP;
|
|
|
- /* check for size_t overflow */
|
|
|
- assert(old_B_size < B_size);
|
|
|
+ size_t i;
|
|
|
+ matrix_t *m = matrix_new(d, d);
|
|
|
|
|
|
- B_pool = realloc(B_pool, B_size * sizeof(BIGNUM*));
|
|
|
|
|
|
- for (i=old_B_size; i!=B_size; i++) {
|
|
|
- bits = 1 + qa_rand() % max_bits;
|
|
|
- B_pool[i] = BN_generate_prime(NULL, bits, 0, NULL, NULL, NULL, NULL);
|
|
|
- }
|
|
|
- /* reallocate space for vectors in R_pool */
|
|
|
- for (i=0; i!=R_size; i++) {
|
|
|
- R_pool[i].v = realloc(R_pool[i].v, sizeof(BIGNUM*) * B_size);
|
|
|
- for (j=old_B_size; j!=B_size; j++) R_pool[i].v[j] = NULL;
|
|
|
+ for (i=0; i!=d; i++) {
|
|
|
+ bzero(m->M[i], sizeof(**(m->M)) * d);
|
|
|
+ m->M[i][i] = 1;
|
|
|
}
|
|
|
+
|
|
|
+ return m;
|
|
|
}
|
|
|
|
|
|
-#define B_pool_free() free(B_pool)
|
|
|
|
|
|
-/**
|
|
|
- * We have two possible choices here, for generating a valid random rumber
|
|
|
- * satisfying Dixon's theorem requirements.
|
|
|
- *
|
|
|
- * Alg. 1 - 1. Start by generating a random r such that r > √N,
|
|
|
- * 2. Calculate s ≡ r² (mod N)
|
|
|
- * 3. Factorize s using B and see if that's B-smooth
|
|
|
- * This algorithm shall have complexity O(k + N² + |B|lg N)
|
|
|
- *
|
|
|
- * Alg. 2 - 1. Generate the random exponents for s, {e₀, e₁, …, eₘ} where m = |B|
|
|
|
- * 2. From the generated exponents, calculate s = p₀^e₀·p₁^e₁·…·pₘ^eₘ
|
|
|
- * knowing that s < N
|
|
|
- * 3. Find an r = √(s + tN) , t ∈ {1..N-1}
|
|
|
- * This algorithm shall have complexity O(k|B| + (N-1)lg N)
|
|
|
- */
|
|
|
-static void extend_R_pool(BIGNUM* N)
|
|
|
+matrix_t*
|
|
|
+matrix_new(int r, int c)
|
|
|
{
|
|
|
- const size_t old_R_size = R_size;
|
|
|
- size_t i, j;
|
|
|
- int e_bits;
|
|
|
- BN_CTX *ctx = BN_CTX_new();
|
|
|
- BIGNUM
|
|
|
- *e,
|
|
|
- *tmp = BN_new(),
|
|
|
- *rem = BN_new(),
|
|
|
- *t = BN_new();
|
|
|
- dixon_number_t *d;
|
|
|
-
|
|
|
- R_size += RPOOL_EXTEND_STEP;
|
|
|
- /* size_t overflow */
|
|
|
- assert(R_size > old_R_size);
|
|
|
- R_pool = realloc(R_pool, sizeof(dixon_number_t));
|
|
|
- /*
|
|
|
- * XXX. There is much more to think about this.
|
|
|
- * We are trying to generate some random exponents e₀…eₖ such that s < N .
|
|
|
- * Hence, log(N) = ae₀ + be₁ + … + leₖ
|
|
|
- */
|
|
|
- e_bits = BN_num_bits(N) / 5;
|
|
|
-
|
|
|
- for (i=old_R_size; i!= R_size; i++) {
|
|
|
- d = &R_pool[i];
|
|
|
- d->s = BN_new();
|
|
|
- d->r = BN_new();
|
|
|
-
|
|
|
- /* generate exponents and calculate s */
|
|
|
- for (j=0; j != B_size && BN_cmp(N, d->s) == 1; j++) {
|
|
|
- e = d->v[j] = BN_new();
|
|
|
- /* XXX. better check for error here. */
|
|
|
- BN_pseudo_rand(e, e_bits, -1, 0);
|
|
|
- BN_exp(tmp, B_pool[j], e, ctx);
|
|
|
- BN_mul(d->s, tmp, d->s, ctx);
|
|
|
- }
|
|
|
+ matrix_t *m;
|
|
|
+ size_t i;
|
|
|
|
|
|
- /* Find an r = √(s + tN) , t ∈ {1..N-1} */
|
|
|
- BN_sqr(tmp, N, ctx);
|
|
|
- BN_one(t);
|
|
|
- for (BN_add(t, t, N); BN_cmp(tmp, t) == 1; BN_add(t, t, N))
|
|
|
- if (BN_sqrtmod(d->r, rem, t, ctx)) break;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- BN_CTX_free(ctx);
|
|
|
- BN_free(rem);
|
|
|
- BN_free(tmp);
|
|
|
- BN_free(t);
|
|
|
+ m = malloc(sizeof(matrix_t));
|
|
|
+ m->f = r;
|
|
|
+ m->r = c;
|
|
|
+ m->M = malloc(sizeof(BIGNUM **) * m->f);
|
|
|
+ for (i=0; i!=r; i++)
|
|
|
+ m->M[i] = malloc(sizeof(BIGNUM*) * m->r);
|
|
|
|
|
|
+ return m;
|
|
|
}
|
|
|
|
|
|
-
|
|
|
-#define R_pool_free() free(R_pool)
|
|
|
-
|
|
|
-int dixon_question_setup(void)
|
|
|
+void
|
|
|
+matrix_free(matrix_t *m)
|
|
|
{
|
|
|
- extern BIGNUM* zero;
|
|
|
- zero = BN_new();
|
|
|
- BN_zero(zero);
|
|
|
+ size_t i;
|
|
|
|
|
|
- extend_B_pool(BPOOL_STARTING_BITS);
|
|
|
- return 1;
|
|
|
+ for (i=0; i!= m->f; i++)
|
|
|
+ free(m->M[i]);
|
|
|
+ free(m->M);
|
|
|
+ free(m);
|
|
|
}
|
|
|
|
|
|
-int dixon_question_teardown(void) {
|
|
|
- BN_free(zero);
|
|
|
-
|
|
|
- B_pool_free();
|
|
|
- R_pool_free();
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-RSA* dixon_question_ask_rsa(const RSA *rsa) {
|
|
|
- /* key data */
|
|
|
- RSA *ret = NULL;
|
|
|
- BIGNUM
|
|
|
- *n,
|
|
|
- *p, *q;
|
|
|
- /* x, y */
|
|
|
- BIGNUM
|
|
|
- *x, *x2,
|
|
|
- *y, *y2;
|
|
|
- BN_CTX *ctx;
|
|
|
- /* U ⊆ R */
|
|
|
- ssize_t *U_bucket;
|
|
|
- /* internal data */
|
|
|
- int epoch;
|
|
|
- BIGNUM *tmp;
|
|
|
- char *even_powers;
|
|
|
- size_t i, j, k;
|
|
|
-
|
|
|
- n = rsa->n;
|
|
|
- U_bucket = malloc(sizeof(ssize_t) * U_SIZE);
|
|
|
- even_powers = malloc(sizeof(char) * B_size);
|
|
|
- ctx = BN_CTX_new();
|
|
|
- x = BN_new();
|
|
|
- y = BN_new();
|
|
|
- x2 = BN_new();
|
|
|
- y2 = BN_new();
|
|
|
- tmp = BN_new();
|
|
|
-
|
|
|
- /* mainloop: iterate until a key is found, or convergence. */
|
|
|
- for (epoch=0; epoch < EPOCHS; epoch++) {
|
|
|
- /* depending on the epoch, populate R_pool and B_pool */
|
|
|
- if (epoch % REPOP_EPOCHS) extend_R_pool(n);
|
|
|
-
|
|
|
- /* reset variables */
|
|
|
- for (i=0; i!=U_SIZE; i++) U_bucket[i] = -1;
|
|
|
- bzero(even_powers, B_size * sizeof(char));
|
|
|
- j = 0;
|
|
|
-
|
|
|
- /* choose a subset of R such that the product of primes can be squared */
|
|
|
- do {
|
|
|
- for (i=0; i!=B_size && j < U_SIZE; i++) {
|
|
|
- /* choose whether to take or not R_pool[i] */
|
|
|
- if (qa_rand() % 2) continue;
|
|
|
-
|
|
|
- /* add the number */
|
|
|
- U_bucket[j++] = i;
|
|
|
- for (k=0; k!=B_size; k++)
|
|
|
- even_powers[k] ^= BN_is_odd(R_pool[i].v[j]);
|
|
|
- }
|
|
|
- } while (!is_vzero(even_powers, B_size * sizeof(char)));
|
|
|
-
|
|
|
- /* let x = Πᵢ rᵢ , y² = Πᵢ sᵢ */
|
|
|
- BN_one(x);
|
|
|
- BN_one(y2);
|
|
|
- for (i=0; i != U_SIZE; i++) {
|
|
|
- if (U_bucket[i] == -1) continue;
|
|
|
-
|
|
|
- j = U_bucket[i];
|
|
|
- BN_mul(x, x, R_pool[j].r, ctx);
|
|
|
- BN_mul(y2, y2, R_pool[j].s, ctx);
|
|
|
- }
|
|
|
- /* retrieve x² from x */
|
|
|
- BN_sqr(x2, x, ctx);
|
|
|
- /* retrieve y from y² */
|
|
|
- /* test: shall *always* be a perfect square */
|
|
|
- if (!BN_sqrtmod(y, tmp, y2, ctx)) continue;
|
|
|
- /* test: assert that x ≡ y (mod N) */
|
|
|
- if (!BN_cmp(x, y)) continue;
|
|
|
-
|
|
|
- /* p, q found :) */
|
|
|
- ret = RSA_new();
|
|
|
- ret->e = rsa->e;
|
|
|
- ret->n = rsa->n;
|
|
|
- ret->p = p = BN_new();
|
|
|
- ret->q = q = BN_new();
|
|
|
-
|
|
|
- BN_uadd(tmp, x, y);
|
|
|
- BN_gcd(p, tmp, n, ctx);
|
|
|
- assert(!BN_is_one(p) && BN_cmp(p, n));
|
|
|
- BN_usub(tmp, x, y);
|
|
|
- BN_gcd(q, tmp, n, ctx);
|
|
|
- assert(!BN_is_one(q) && BN_cmp(q, n));
|
|
|
- }
|
|
|
-
|
|
|
- BN_free(x);
|
|
|
- BN_free(x2);
|
|
|
- BN_free(y);
|
|
|
- BN_free(y2);
|
|
|
- free(U_bucket);
|
|
|
- free(even_powers);
|
|
|
-
|
|
|
- return ret;
|
|
|
-}
|
|
|
|
|
|
qa_question_t DixonQuestion = {
|
|
|
.name = "dixon",
|
|
|
- .pretty_name = "Dixon's Factorization",
|
|
|
- .setup = dixon_question_setup,
|
|
|
- .teardown = dixon_question_teardown,
|
|
|
- .test = NULL,
|
|
|
- .ask_rsa = dixon_question_ask_rsa,
|
|
|
- .ask_crt = NULL
|
|
|
+ .pretty_name = "Dixon's Factorization"
|
|
|
};
|