|
@@ -64,7 +64,7 @@ Then it is possible to recover $f$, having $f'$, if $\delta$ is small
|
|
|
enough, where small enough means:
|
|
|
\begin{align}
|
|
|
\label{eq:wiener:cf_approx}
|
|
|
- \delta = 1 - \frac{f'}{f} < \frac{1}{\rfrac{3}{2}{h_1}{d_1}}
|
|
|
+ \delta = 1 - \frac{f'}{f} < \frac{1}{\rfrac{3}{2}{h_1}{k_1}}
|
|
|
\end{align}
|
|
|
\\
|
|
|
The ``continued fraction algorithm'' allowing us to recover $f$ is the
|
|
@@ -76,7 +76,7 @@ following:
|
|
|
\item generate the next $a_i$ of the continued fraction expansion of $f'$;
|
|
|
\item use ~\ref{eq:wiener:cf} to generate the next fraction $\rfrac{h_i}{k_i}$
|
|
|
equal to $\angular{a_0, a_1, \ldots, a_{i-1}, a_i}$ %% non e` proprio cosi`
|
|
|
- \item chech whether $\rfrac{h_i}{k_i}$ is equal to $f$
|
|
|
+ \item check whether $\rfrac{h_i}{k_i}$ is equal to $f$
|
|
|
\end{enumerate}
|
|
|
|
|
|
\section{The actual attack}
|