123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226 |
- /**
- * \file dixon.c
- * \brief An implementation of Dixon's Attack using bignums.
- *
- * Given a non-empty set B of primes, called factor-base, and
- * given a non-empty set of random numbers R, s.t. ∀ r ∈ R, s ≡ r² (mod N) is B-smooth.
- *
- * Try to find
- * U ⊂ R | (Πᵤ rᵢ)² ≡ Π s (mod N) and by defining x ≝ Πᵤ rᵢ, y ≝ √(Π s)
- * x² ≡ y² (mod N)
- * Asserting that x ≢ y (mod N) we claim to have found the two non-trivial
- * factors of N by computing gcd(x+y, N) and gcd(x-y, N).
- *
- * \note N = pq is assumed to be the public modulus,
- * while e, d . ed ≡ 1 (mod φ(N)) are respectively the public and the private
- * exponent.
- */
- #include <assert.h>
- #include <strings.h>
- #include <openssl/bn.h>
- #include "qa/questions/questions.h"
- #include "qa/questions/primes.h"
- #include "qa/questions/qarith.h"
- #include "qa/questions/qstrings.h"
- #include "qa/questions/qdixon.h"
- matrix_t*
- identity_matrix_new(int d)
- {
- size_t i;
- matrix_t *m = matrix_new(d, d);
- for (i=0; i!=d; i++) {
- bzero(m->M[i], sizeof(**(m->M)) * d);
- m->M[i][i] = 1;
- }
- return m;
- }
- matrix_t*
- matrix_new(int r, int c)
- {
- matrix_t *m;
- size_t i;
- m = malloc(sizeof(matrix_t));
- m->f = r;
- m->r = c;
- m->M = malloc(sizeof(BIGNUM **) * m->f);
- for (i=0; i!=r; i++)
- m->M[i] = malloc(sizeof(BIGNUM*) * m->r);
- return m;
- }
- void
- matrix_free(matrix_t *m)
- {
- size_t i;
- for (i=0; i!= m->f; i++)
- free(m->M[i]);
- free(m->M);
- free(m);
- }
- /*
- * \ref Kernel into a binary matrix.
- *
- * Discover linear dependencies using a refined version of the Gauss-Jordan
- * algorithm, from Brillhart and Morrison.
- *
- * \return h, the history matrix
- *
- */
- matrix_t *
- kernel(matrix_t *m)
- {
- int i, j, k;
- matrix_t *h = identity_matrix_new(m->f);
- for (j=0; j!=m->r; j++)
- for (i=0; i != m->f; i++)
- if (m->M[i][j]) {
- for (k=i+1; k != m->f; k++)
- if (m->M[k][j]) {
- vxor(m->M[k], m->M[k], m->M[i], m->r);
- vxor(h->M[k], h->M[k], h->M[i], h->r);
- }
- break;
- }
- return h;
- }
- /**
- * \brief Check for smoothness, incuding negative numbers.
- *
- * As there is no reason to reject negative numbers, provided that the product is positive, we are going to include the sign into the fist element of `v`, as to indicate the sign.
- */
- int dixon_smooth(BIGNUM *y, BN_CTX *ctx, char *v, size_t len)
- {
- short neg, ret;
- /* is yᵢ smooth? */
- neg = BN_is_negative(y);
- if (neg) BN_set_negative(y, 0);
- ret = smooth(y, ctx, v+1, len-1);
- if (neg) BN_set_negative(y, 1);
- v[0] = neg;
- return ret;
- }
- /**
- * \brief Discover a number x such that x² - n is smooth.
- *
- */
- inline void
- discover_smooth(BIGNUM *y, BIGNUM *x, BIGNUM *n,
- BN_CTX *ctx, char *v, size_t len)
- {
- do {
- BN_pseudo_rand_range(x, n);
- /* yᵢ = xᵢ² - N */
- BN_sqr(y, x, ctx);
- BN_sub(y, y, n);
- } while (!dixon_smooth(y, ctx, v, len));
- }
- static RSA*
- dixon_question_ask_rsa(const RSA *rsa)
- {
- /*
- * take exp(sqrt(ln N ln ln N))
- * ≅ 1.44 * 2^(sqrt(lg N lg lg N))
- * ≅ ³/₂ * 2^(sqrt(lg N 10)) for keys of 1024 bits.
- */
- size_t primes = 3 * (1 << (BN_num_bits(rsa->n) * 5)) / 2;
- size_t f = primes + 5;
- size_t r = primes + 1;
- size_t i, j;
- RSA *ret = NULL;
- BIGNUM
- *x = BN_new(),
- *y = BN_new(),
- *sqy = BN_new(),
- *rem = BN_new(),
- *gcd = BN_new();
- BN_CTX *ctx = BN_CTX_new();
- struct bnpair {
- BIGNUM *x;
- BIGNUM *y;
- } *R;
- matrix_t *m;
- matrix_t *h;
- /** STEP 1: initialization **/
- /* plus one for the sign */
- m = matrix_new(f, r);
- R = malloc(sizeof(struct bnpair) * f);
- for (i=0; i!=f; i++) {
- R[i].x = BN_new();
- R[i].y = BN_new();
- }
- /** STEP 2 generating R */
- for (i=0; i < m->f; i++) {
- fprintf(stderr, "[!] Discovering %zdth smooth number\n", i);
- discover_smooth(R[i].y, R[i].x, rsa->n,
- ctx, m->M[i], m->r);
- }
- /** STEP 3: break & enter. */
- h = kernel(m);
- BN_one(x);
- BN_one(sqy);
- for (i=0; i!=f && !ret; i++)
- /* if we found an even power */
- if (is_vzero(m->M[i], f)) {
- /* compute x, y² */
- for (j=0; j!=f; j++)
- if (h->M[i][j]) {
- BN_mul(x, x, R[j].x, ctx);
- BN_mul(sqy, sqy, R[j].y, ctx);
- }
- BN_sqrtmod(y, rem, sqy, ctx);
- assert(!BN_is_zero(rem));
- BN_gcd(gcd, x, y, ctx);
- if (BN_cmp(gcd, rsa->n) < 0 &&
- BN_cmp(gcd, BN_value_one()) > 0)
- ret = qa_RSA_recover(rsa, gcd, ctx);
- }
- /* free all the shit */
- for (i=0; i!=f; i++) {
- BN_free(R[i].x);
- BN_free(R[i].y);
- }
- free(R);
- BN_free(x);
- BN_free(y);
- BN_free(sqy);
- BN_free(rem);
- BN_free(gcd);
- BN_CTX_free(ctx);
- matrix_free(m);
- return ret;
- }
- qa_question_t DixonQuestion = {
- .name = "dixon",
- .pretty_name = "Dixon's Factorization",
- .ask_rsa = dixon_question_ask_rsa
- };
|