| 
					
				 | 
			
			
				@@ -209,7 +209,7 @@ $e^{\sqrt{\ln N \ln \ln N}}$. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				   \caption{Discovering Smoothness} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				   \begin{algorithmic}[1] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     \Require $\factorBase$, the factor base 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    \Procedure{smooth}{$x$} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    \Function{smooth}{$x$} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				       \State $v \gets (\alpha_0 = 0, \ldots, \alpha_{|\factorBase|} = 0)$ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				       \If{$x < 0$} $\alpha_0 \gets 1$ \EndIf 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -224,7 +224,7 @@ $e^{\sqrt{\ln N \ln \ln N}}$. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				       \Else 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         \State \Return \strong{nil} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				       \EndIf 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-    \EndProcedure 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    \EndFunction 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				   \end{algorithmic} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 \end{algorithm} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 |