|
@@ -209,7 +209,7 @@ $e^{\sqrt{\ln N \ln \ln N}}$.
|
|
\caption{Discovering Smoothness}
|
|
\caption{Discovering Smoothness}
|
|
\begin{algorithmic}[1]
|
|
\begin{algorithmic}[1]
|
|
\Require $\factorBase$, the factor base
|
|
\Require $\factorBase$, the factor base
|
|
- \Procedure{smooth}{$x$}
|
|
|
|
|
|
+ \Function{smooth}{$x$}
|
|
\State $v \gets (\alpha_0 = 0, \ldots, \alpha_{|\factorBase|} = 0)$
|
|
\State $v \gets (\alpha_0 = 0, \ldots, \alpha_{|\factorBase|} = 0)$
|
|
|
|
|
|
\If{$x < 0$} $\alpha_0 \gets 1$ \EndIf
|
|
\If{$x < 0$} $\alpha_0 \gets 1$ \EndIf
|
|
@@ -224,7 +224,7 @@ $e^{\sqrt{\ln N \ln \ln N}}$.
|
|
\Else
|
|
\Else
|
|
\State \Return \strong{nil}
|
|
\State \Return \strong{nil}
|
|
\EndIf
|
|
\EndIf
|
|
- \EndProcedure
|
|
|
|
|
|
+ \EndFunction
|
|
\end{algorithmic}
|
|
\end{algorithmic}
|
|
\end{algorithm}
|
|
\end{algorithm}
|
|
|
|
|